D_s production cross section

Reinhard Schwienhorst University of Minnesota

Purpose and Goal

- Find the number of tau neutrinos produced in the beam dump
- D_s decays are the dominant source of tau neutrinos.
- Find the number of D_s produced in the beam dump

Method 1

- Measurements of the D_s production cross section:
 - none exist for a beam energy of 800GeV
 - find measurements for other energies E769: 250GeV, σ_{Ds} =1.5±1µb
 - use a theoretical curve to project them to an energy of 800GeV
 (NLO QCD calculation for D[±])

Method 2

- Find measurements of the production cross section for D[±] and D⁰.
- Find the cross section ratio
 - $-D_s/D^{\pm}$ and D_s/D^0 .
- Compute the production cross section for D_s.

D⁰ production cross section for pions and protons in fixed target experiments

D[±] production cross section for pions and protons in fixed target experiments

Ratio of D[±] over D⁰ production cross sections

Theoretical prediction of the D[±] over D⁰ production cross section ratio

Assumption: all D meson states are created with equal probability Isospin considerations:

- •Isoscalar: D[±] and D⁰
- •Isovector: D* and D* 0

Branching ratios:

- $\bullet D^*_{+} \rightarrow D^{\pm} Br = 30.6\%, D^*_{+} \rightarrow D^{0} Br = 68.3\%$
- $\bullet D^*_0 \rightarrow D^0 Br = 100\%$

Count particles:

- •for every 8 charm quarks:
 - •originally produce 1 D^{\pm} , 1 D^{0} , 3 D^{*}_{\pm} , D^{*}_{0}
 - •after decay of the resonance:

$$2.56~D^{\scriptscriptstyle\pm}$$
 , $5.44~D^0$, ratio=0.32

Ratio of D_s over D[±] production cross sections

Ratio of D_s over D⁰ production cross sections

D_s production cross section for protons in fixed target experiments

D_s production cross section

- Problem: the two ratios predict different values
- Cause for the uncertainty: the absolute D[±] and
 D₀ production cross sections for protons
 - is higher than theory for D[±] and
 - lower than theory for D⁰ (but much closer)
- to find an answer:
 - compare to πN data
 - also pN versus πN production of J/Ψ
 - also pN versus π N production of b mesons (factor of 0.9)
 - compare D_s/D^{\pm} ratio (≈ 0.4) to K^{\pm}/π^{\pm} ratio (≈ 0.1)
 - K^{\pm}/π^{\pm} ratio corrected for D^{\pm}/D^{0} ratio: ≈ 0.25

D_s production cross section for pions in fixed target experiments

J/Y production cross section for pions and protons in fixed target experiments

Results

- The different methods to compute the D_s production cross section agree within 2 σ
 - the smallest error comes from the D_s/D^0 cross section ratio
 - the D[±]/D⁰ cross section ratio for <u>protons</u> is very uncertain and the average does not agree with theory, pion data, kaon data, γ data or e⁺e⁻ data (CLEO)
 - The D[±] production cross section for protons seems to be too large
 - The D⁰ production cross section for protons seems to be too small

Results (continued)

- The D_s/D⁰ production cross section for protons agrees with the pion data
- bottom and J/Ψ production indicates that the production cross section should be slightly smaller for protons than for pions.
- the K^{\pm}/π^{\pm} ratio points to the lower value for the production cross section

Conclusion and Outlook

- The D_s production cross section is $(4.2\pm0.6)\mu b/nucleon$.
- The error is small but the uncertainty is large
 - due to the uncertainty in the theoretical predictions
 - due to large errors and inconsistencies in measurements
- We should continue this discussion